- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Townsend, ed., Jeffrey (2)
-
Conant, Gavin (1)
-
Crandall, Johnathan_G (1)
-
Hittinger, Chris_Todd (1)
-
Ji, Xiang (1)
-
Kishino, Hirohisa (1)
-
Rokas, Antonis (1)
-
Thorne, Jeffrey L. (1)
-
Xu, Tanchumin (1)
-
Yang, Yixuan (1)
-
Zhou, Xiaofan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Functional innovation at the protein level is a key source of evolutionary novelties. The constraints on functional innovations are likely to be highly specific in different proteins, which are shaped by their unique histories and the extent of global epistasis that arises from their structures and biochemistries. These contextual nuances in the sequence–function relationship have implications both for a basic understanding of the evolutionary process and for engineering proteins with desirable properties. Here, we have investigated the molecular basis of novel function in a model member of an ancient, conserved, and biotechnologically relevant protein family. These Major Facilitator Superfamily sugar porters are a functionally diverse group of proteins that are thought to be highly plastic and evolvable. By dissecting a recent evolutionary innovation in an α-glucoside transporter from the yeast Saccharomyces eubayanus, we show that the ability to transport a novel substrate requires high-order interactions between many protein regions and numerous specific residues proximal to the transport channel. To reconcile the functional diversity of this family with the constrained evolution of this model protein, we generated new, state-of-the-art genome annotations for 332 Saccharomycotina yeast species spanning ∼400 My of evolution. By integrating phylogenetic and phenotypic analyses across these species, we show that the model yeast α-glucoside transporters likely evolved from a multifunctional ancestor and became subfunctionalized. The accumulation of additive and epistatic substitutions likely entrenched this subfunction, which made the simultaneous acquisition of multiple interacting substitutions the only reasonably accessible path to novelty.more » « less
-
Yang, Yixuan; Xu, Tanchumin; Conant, Gavin; Kishino, Hirohisa; Thorne, Jeffrey L.; Ji, Xiang; Townsend, ed., Jeffrey (, Molecular Biology and Evolution)Abstract Following a duplication, the resulting paralogs tend to diverge. While mutation and natural selection can accelerate this process, they can also slow it. Here, we quantify the paralog homogenization that is caused by point mutations and interlocus gene conversion (IGC). Among 164 duplicated teleost genes, the median percentage of postduplication codon substitutions that arise from IGC rather than point mutation is estimated to be between 7% and 8%. By differentiating between the nonsynonymous codon substitutions that homogenize the protein sequences of paralogs and the nonhomogenizing nonsynonymous substitutions, we estimate the homogenizing nonsynonymous rates to be higher for 163 of the 164 teleost data sets as well as for all 14 data sets of duplicated yeast ribosomal protein-coding genes that we consider. For all 14 yeast data sets, the estimated homogenizing nonsynonymous rates exceed the synonymous rates.more » « less
An official website of the United States government
